Potencia 1: Introducción

“Introducción” se llama el tema, e introducción le pongo como título. Más bien es una presentación extensa de 107 diapositivas, pero aquí estoy yo, otra vez, para resumirlo. Así que sin miedo, vamos a ponernos a ello:

¿Por qué electrónica de potencia? Otra vez más, nos surge la necesidad de transformar la energía eléctrica de la red de suministro eléctrico a otra de sus formas, AC o DC, que sea útil para el consumidor. De ésto ya hemos visto un poco en analógica, fuentes de alimentación, sin embargo, las fuentes lineales pueden no ser lo suficientemente potentes para la aplicación que buscamos, además de que queremos transformar la energía de distintas formas:

  • AC a AC: regulador de alterna.
  • DC a AC: Inversor.
  • AC a DC: Rectificador, controlado o no.
  • DC a DC: Troceador.

Por ahora lo que nos va a ocupar, ya que es la base del resto, es el troceador. Éste se basa en un “simple” circuito compuesto por un semiconductor de potencia trabajando en conmutación, cuya función es, precisamente, trocear la señal continua de entrada; y un filtro antes de la carga, que se encargue de dejar la señal cuadrada que queda tras el semiconductor lo más continua posible. El semiconductor está controlado por un circuito de disparo, que no se va a ver todavía, que muestrea la salida, la referencia y cambia o bien el periodo o bien el ancho de pulso de la señal.

Análisis de los circuitos

Pero ésto que me cuentas ¿será verdad?¿Cómo puede funcionar así? Pues hay gente que antes que nadie se preocupó de estudiar ésto y sacar fórmulas que nos ayudan a calcular lo que ocurre en los circuitos. Vamos a empezar por los componentes del filtro, los pasivos:

  • La bobina

Es un componente que se crea mediante un conductor enrollado sobre sí mismo. Normalmente, en potencia tendrán un núcleo de algún material ferromagnético que le otorga unas propiedades distintas al campo magnético que la bobina crea con el paso de corriente.

La corriente, es lo que le importa a las bobinas. Éstas van a intentar por todos sus medios posibles que la variación de corriente en un circuito sea la menor posible. Si tu intentas variar la corriente que pasa por una bobina, ésta va a responder mediante un aumento de tensión en el sentido contrario. Las fórmulas que expresan ésto son:

Potbob

Donde L es la inductancia, propiedad de cada bobina, y se mide en Henrios. La que más se utiliza es la fórmula de la tensión, y lo que nos indica, a simple vista, es que si se aplica un aumento de corriente muy grande, en muy poco tiempo, la tensión en la bobina aumenta. Por ésta razón, no podemos usar (aunque en la vida real no existan) pulsos 100% cuadrados, ya que la variación en t=0 hace la tensión infinita.

Otra propiedad de las bobinas es que si su L es muy grande, tiene mayor capacidad de evitar los cambios de corriente, por lo tanto podemos considerar, a efectos teóricos, que es una fuente de corriente constante.

Y otra cosa que nos interesa es sabe que, en régimen estacionario (la señal se ha estabilizado, las tensiones y corrientes empiezan y terminan en el mismo punto cada periodo) el valor medio de la tensión en extremos de la inductancia es nulo, VL(av)=0.

  • El condensador

Ya escribí sobre él en 2 ocasiones: condensadores I y condensadores II.

Sus fórmulas (ésta vez con diferenciales) son:

Potcon

Y la más utilizada es la segunda, que indica lo mismo pero al contrario: si aplicamos una variación de tensión, se produce una corriente en el condensador. Ésto va a hacer, igualmente, que no podamos tener señales puramente cuadradas, por la razón de que la corriente se haría infinita, cosa que no puede ser.

También de la misma forma, si la capacidad del condensador es muy grande, podemos considerar que las variaciones de tensión son muy pequeñas, y por lo tanto sería una fuente de tensión. Ésto hace que consideremos una tensión de salida constante a la hora de analizar algunos circuitos.

Por último, es el valor medio de la corriente por el condensador el que toma valor 0 en régimen estacionario.

  • Magnitudes periódicas

Son valores de magnitudes que ya hemos mencionado antes:

Potmag

No os asustéis con las integrales, porque luego son funciones periódicas totalmente que se pueden trocear en 2 partes y hacer la integral sin tablas ni historias.

  • Balance energético

Ahora vamos a hablar de potencias, igual que se hizo en electricidad, pero con unas fórmulas que sirven para todo tipo de corriente, no sólo AC.

Potene

  • Circuito R en conmutación

Basado sólo en una fuente, un semiconductor en conmutación y una resistencia como carga,  lo que obtendremos son formas puramente cuadradas de todas las magnitudes (excepto la de entrada, claro). En realidad no necesitaríamos éste apartado, ya que aplicando las fórmulas anteriores sale lo mismo.

PotR

Y ahí os presento a delta, el símbolo ése extraño. Es el ciclo de trabajo, en porcentaje. Más bien es la relación de tiempo activo (el semiconductor está en ON) con el tiempo total. Así, por ejemplo delta*T es el tiempo total que pasa corriente por el semiconductor.

  • Circuito R y L (muy alta) en conmutación

Aquí la cosa cambia porque la bobina tiene un transitorio, un tiempo de carga y descarga. Lo más destacable es que se considera que la corriente es constante.

PotRL

Semiconductores de potencia

Para trocear  la señal de entrada se utilizan semiconductores de potencia, cuyas características difieren un poco de los semiconductores normales. Para empezar, ya no vamos a considerar que la conmutación se produce instantáneamente, que no hay pérdidas de potencia o que la temperatura no nos importa, cada semiconductor va a tener unas características que irá demostrando conforme vaya desempeñando sus funciones:

  • Conmutación a ON

Cuando el semiconductor recibe la señal de activarse por su terminal correspondiente, éste tarda un poco en reaccionar, éste es el tiempo de retardo (delay, td), y las magnitudes no empiezan a cambiar hasta que éste se acaba. Una vez pasado éste pequeño tiempo, hay un tiempo de subida (rise, tr), tiempo que tarda la corriente que pasa por el semiconductor en alcanzar su máximo. Cuando hay una bobina en el circuito con un valor de inductancia muy grande, éste tiempo se distribuye en 2:

  1. tri: cuando pasa el tiempo de delay, la corriente empieza a aumentar, pero la tensión se mantiene
  2. tfv: una vez la corriente llega a su máximo, la tensión que cae en el semiconductor empieza a disminuir (voltage fall)
  • Conmutación a OFF

De la misma forma, cuando llega la señal de desactivar el semiconductor, tarda un tiempo en reaccionar que llamamos tiempo de almacenamiento (storage, ts, tdoff), y después hay un tiempo de bajada (fall, tf), tiempo que tarda la corriente en llegar a su mínimo. Con inductancia también se distribuye en 2:

  1. trv: al pasar el delay, la caída de tensión en el semiconductor empieza a aumentar, manteniendo la corriente constante.
  2. tfi: una vez la caída de tensión llega al máximo, la corriente empieza a caer hasta el mínimo.

Son éstos tiempos de subida y bajada los que hacen que la potencia en el momento de la conmutación aumente (porque se encuentran la corriente y la tensión máximas en un punto). Para evitar excesos de disipación se deben tener en cuenta éstas propiedades y ajustar un periodo y ciclo de trabajo adecuados:

PotT

 

Tipos de semiconductores de potencia

Sí, hay semiconductores más allá de los transistores, y es necesario saber cuál usar en su aplicación. Por ejemplo, un tiristor soportaría una potencia enorme (es el dispositivo con más capacidad de potencia), pero trabaja a frecuencias bajas, y un MOSFET trabajaría a frecuencias muy altas, pero la potencia que soporta no es ni parecida.

  • Diodo de potencia

Ya conocido, es un dispositivo unidireccional, sin control. Los de potencia son capaces de soportar mayor corriente por tener una sección más grande, y una tensión más elevada debido a la región de deriva añadida en su estructura interna. Lógicamente no tienen la misma forma:

  • Tiristores: SCR

Éste va a ser nuevo para nosotros: se trata de un diodo con una entrada de disparo, que se activa de una forma bastante sencilla aplicando tensión en la puerta, pero su bloqueo no lo es tanto, ya que es necesario el paso por 0 de la tensión en ánodo. En AC el bloqueo es natural en cada semiciclo, pero en DC es necesario un circuito para forzarlo.

Se recomienda retirar el pulso una vez disparado el dispositivo para evitar que disipe potencia por su terminal de activación, así como hacer el pulso compuesto por un tren de pulsos. Ésto ayudará a aumentar su vida útil.

  • Tiristores: TRIAC

Es igual que el SCR, pero como si hubieran puesto dos en antiparalelo, de forma que conduce bidireccionalmente.

  • BJT de potencia

Es igual que el BJT normal, sólo que soporta más corriente y tensión, aunque menos que un SCR. Se controla mediante corriente por la puerta. Al ser de potencia, se añaden dos nuevos conceptos:

  1. Área de trabajo seguro (SOA): es una gráfica que relaciona Ic y Vce, y mediante unas líneas delimita el área de trabajo en la que el transistor no se destruye. Los límites vienen dados por la corriente máxima de colector, la tensión Vce máxima, la potencia disipable, y la segunda ruptura, que es un efecto producido por haber puntos de mayor conducción en la estructura interna, y por lo tanto de mayor potencia y temperatura, que puede alcanzar su máximo valor y fundir el componente.
  2. Embalamiento térmico: es un efecto producido por el aumento de temperatura en el componente. Al aumentar la temperatura, es capaz de aumentar la corriente que pasa a través de él, y ésto hace que aumente la temperatura, aumente la corriente, aumente… Y así hasta que se destruye. Se puede evitar controlando la temperatura o mediante circuitos externos, como se hace en amplificadores de audio.
  • MOSFET de potencia

No es igual que el MOSFET normal, ya se verá después por qué. Lo que sí es igual es su alta impedancia de puerta. Los MOSFET de potencia tienen, en su mayoría, un diodo de protección entre drenador y surtidor, y son muy fáciles de poner en paralelo, ya que no necesitan resistencias para trabajar a la vez.

Tiene un SOA delimitado únicamente por la tensión Vds máxima, la corriente Id máxima y la temperatura máxima, Tjmax. Al contrario que el BJT, cuando aumenta la temperatura se reduce la corriente máxima que es capaz de conducir.

  • IGBT

Es un híbrido entre MOSFET y BJT. Tiene puerta a la entrada, con impedancia muy elevada (se dispara igual que el MOSFET de potencia), un SOA sin segunda ruptura, y unas características de tensión y corriente de conducción similares a las de un BJT. También es fácil ponerlos en paralelo.

Disparo de los semiconductores

Uno de los inconvenientes que se van a encontrar a la hora de diseñar el circuito de potencia, es que los semiconductores necesitan ser disparados aplicando el disparo entre puerta  y surtidor o puerta y cátodo, depende de cómo se llame. Para ello se deberán utilizar:

  • Transformadores de impulsos: transforman un impulso del primario al secundario, siguiendo también una relación dependiente de su número de espiras. El inconveniente es que no transmite continua. Lo bueno, elimina interferencias debidas a las altas frecuencias.
  • Optoacopladores: éstos sí que pueden transmitir continua, pero necesitan una fuente de alimentación auxiliar que esté aislada del circuito principal.

Además, los MOSFET de potencia tienen una forma distinta de dispararse, siguiendo una secuencia:

  1. Conmutación a ON: se aplica una corriente (sí, corriente) mayor que 0 en la puerta
  2. Mientras conduce, la corriente tiene que ser igual a 0
  3. Para conmutar a OFF se aplica una corriente menor que 0 (básicamente, se va a descargar el condensador parásito).

Caracterísiticas térmicas

Éstas van a depender de la serie de semiconductor, el tipo de encapsulado (TO92, TO126, TO220 y TO3 son los más comunes) e incluso afecta el fabricante, aunque intenten que las características sean aproximadamente las mismas.

Para hacer un cálculo aproximado de la temperatura, la potencia máxima, o la resistencia térmica del disipador que necesitamos, hacemos una analogía con la ley de ohm: la temperatura es la tensión (hay una diferencia, temperatura interna y externa), la potencia es la corriente y la resistencia térmica es la resistencia. Tj-Ta = P*Rt

¿Qué es la resistencia térmica? Es la proporción en la que va a aumentar la temperatura cuando se aplica una potencia. En las hojas de datos podemos encontrar varias resistencias térmicas que vienen con nuestro semiconductor:

  • Rjc: Resistencia junction-case, la junction es la estructura interna del semiconductor, a veces llamadas pastillas por su forma cuadrada, y case es lo que vemos, lo que cubre la pastilla.
  • Rca: Resistencia case-ambient, la resistencia térmica que hay entre la “cáscara” y el ambiente.

Encontraremos también la Tjmax, la temperatura máxima que puede alcanzar la pastilla, será la temperatura inicial. Para tener un estándar aproximado, la temperatura al otro extremo del “circuito”, la temperatura ambiente, se suele considerar de 40ºC, pero se debe aumentar si se va a trabajar en un ambiente industrial especialmente cálido.

Así pues, ya hemos calculado la potencia que tiene que disipar el semiconductor, y necesitamos saber qué disipador le vamos a añadir para que no se queme. Lo que hacemos es poner las resistencias Rjc, Rcr (case-radiator) y Rra (radiator-ambient) en serie, las temperaturas a los extremos y que las atraviese la potencia. Calculamos entonces la Rra, y con éste dato consultamos las hojas de datos de los fabricantes de disipadores.

(Ésta imagen no incluye la Rcr, ésto puede ser debido al uso de pasta térmica [prácticamente obligatorio en todos los casos], cuya resistencia térmica es despreciable)

Y éste es el final de la “introducción”. Si queréis más, lo próximo son fuentes conmutadas, y empezaremos a hablar de circuitos e integrados para el control, pero habrá que esperar a que yo termine el tema. ¡Buena suerte!.

Digital 1: Familias lógicas

Si habéis decidido saltaros la introducción y habéis llegado hasta aquí, supongo que ya sabréis de qué va la cosa. Para el resto, como dije en dicho apartado, una vez tenemos el circuito, cuando lo vamos a montar, es decir, a la hora de utilizarlos en la realidad, utilizamos un circuito integrado que tiene unas características propias. Dichas características son otra excusa para darnos dolor de cabeza e introducir éste tema.

En primer lugar veremos que hay dos familias muy fácilmente distinguibles de integrados: TTL y CMOS. Como su nombre indica, la CMOS utiliza transistores tecnología MOS (MOSFET), y la TTL utiliza transistores BJT. Y ésto las hace diferentes.

Vamos a ver la nomenclatura de dichos integrados:

  • 74: Estándar TTL
  • 40 o 140: Estándar CMOS
  • 74S: TTL Schottky
  • 74L: TTL baja potencia
  • 74LS: TTL baja potencia Schottky (Ésta es la más usada)
  • 74H: TTL alta velocidad
  • 74AS: TTL Schottky avanzada
  • 74C: CMOS compatible con el patillaje de las TTL
  • 74HC: CMOS alta velocidad (Más usada, actualmente más que la TTL)
  • 74HCT: CMOS alta velocidad compatible con patillaje y tensiones de TTL

La familia 74HCT es muy importante hoy en día para reemplazar antiguos TTL o como compatibilidad con otros integrados de ésta tecnología, ya que tienen la misma distribución de patillas y semejantes características.

Características de Entrada / Salida

Ahora vamos a ver cómo sería una puerta inversora de tecnología TTL por dentro:

Dnotttl

Como veis la entrada está conformada por un transistor puesto al revés, un transistor especial que se comporta como dos diodos, uno mirando hacia la base de Q2 y otro mirando hacia la entrada. Si ponemos la entrada a 0, la corriente va de VCC por la base hasta la entrada, drenando la corriente de la base de Q2 y poniéndolo en corte, de forma que a la salida tenemos un 1. Si ponemos la entrada a 1, la corriente no tiene otra que ir hacia la base de Q2 y polarizarlo en saturación, así que en la salida habrá un 0.

Por ésta cuestión es que si dejamos una patilla de entrada TTL al aire (no conectada a VCC, a tierra, a ningún sitio con referencia), se toma como si hubiese un 1, porque la corriente no puede fluir a través del diodo, que está ahí por protección.

Muy importante: patilla de entrada TTL al aire = 1. Si se recuerda ésta regla, se pueden simplificar bastante algunos diseños en el futuro.

Y ahora observemos una puerta inversora CMOS:

DnotcmosEs muy importante que la entrada de una puerta CMOS siempre esté conectada a algo, ya sea HIGH o LOW, si no, tendremos un estado indeterminado.

Aquí no es necesario resitencias ni nada… Bueno, ésto se debe al control por tensión de las puertas, supuestamente su impedancia de puerta es infinita, por lo tanto no habría corriente de entrada. Vale, ésto es falso, pero si comparamos la corriente de polarización entre una TTL y una CMOS (74LS04 y 74HC04):

DIttls

DIcmos

Vemos que la CMOS tiene una corriente enana en comparación a la TTL. De 0.1uA (25ºC) a entre 20 y 100uA, hay bastante.

Otra cosa que se puede ver en la datasheet es la corriente a entrada LOW, es decir, cuando pongamos la entrada a masa (0), va a salir una corriente desde dicha entrada que polariza al transistor, por éso se expresa en negativo:

DIttll

Vemos un máximo de 0.4 mA en la TTL ¿Y en la CMOS? La diferencia es tan poca que, si os fijáis, ya viene dada en la tabla de antes (la datasheet no especifica Input HIGH o Input LOW para CMOS, sólo Input Current).

También a la salida tenemos unas especificaciones diferentes de corriente:

DIottlDIocmos

Como veis la TTL es capaz de entregar más corriente, sin embargo, debido a la corriente que necesita de entrada, no se pueden poner tantas puertas TTL en paralelo detrás de otra como si se tratase de CMOS. A ésto lo llamamos cargabilidad y va en número de puertas. Dados éstos datos podríamos poner unas 50 TLL o unas 200 CMOS.

Como el diseño TTL que hemos visto al principio otorgaba todavía menos corriente, se inventaron la salida totem-pole, que se basa en otra configuración de transistores añadida para aumentar la corriente de salida. Ésta configuración, creo, viene dada ya en todos los integrados. Los CMOS no la necesitan, pero se usan si son HCT para adaptar mejor.

Dtotem

Pero ahora vamos a meternos en el tortuoso mundo de los niveles de entrada salida en tensión.

Éstos niveles también nos los da el fabricante y nos dicen a partir de qué tensión nos aseguran que tenemos un 1 o un 0 a la entrada o a la salida. Se pueden ver en forma de gráfico, para simplificarlo, empecemos con un 74LS04:

Dvttl

Dvttl2

Ésto nos indica que a la entrada, lo que nosotros controlamos, si ponemos un rango de tensión de 0 a 0.8 voltios, el integrado seguro que lo capta como un LOW. Y lo mismo ocurre si ponemos, una tensión entre 2 y 5 voltios, el integrado seguro lo capta como HIGH. ¿Y por qué lo remarco? Porque ésto en realidad es cosa de estadística ¿Habéis visto el rango entre 0.8 y 2 voltios, el inaceptable? Supongamos que hemos elegido un integrado cualquiera, ponemos un regulador de tensión variable a la entrada y observamos cómo lo capta el integrado. Llegamos hasta 0.8 y subimos, quizás hasta 1 voltio no pase nada, 1.2, 1.4 … Quién sabe, el caso es que en un punto desconocido entre 0.8 y 2 voltios el integrado dejará de captar un 0 y captará un 1, pero no nos vamos a poner a mirar integrado por integrado cuál es éste punto (que además cambia por temperatura, humedad, calidad de alimentación, etc.), sino que hacemos una estadística y sacamos los márgenes. Es más un caso de asegurarse.

Y a la salida, cosa que no controlamos, obtendremos un rango de tensión que va entre 0 y 0.4 para un OUTPUT LOW y entre 2.4 y 5 voltios para un OUTPUT HIGH. Nos interesa éste dato para saber el margen de ruido, es decir, cuánto se puede mover la señal arriba o abajo para que el siguiente integrado de la cola lo capte bien y no se meta en zona “inaceptable”. Es cosa de restar:

  • Margen de ruido HIGH: 2.4 – 2 V = 0.4V
  • Margen de ruido LOW 0.8-0.4 = 0.4V

Importante para líneas que cojan ruido del ambiente o aparatos cercanos.

Para la tecnología CMOS ocurre algo similar, pero los márgenes son bastante más amplios, además de incluir en las datasheet varios en condición de la alimentación, ya que un integrado CMOS puro (no HCT), puede ser alimentado en rangos muy distintos de tensión, límites recomendados por el fabricante que podrían llegar a estar entre 1.2 y 15 voltios.

Dvcmos

Así por ejemplo, con unos 5V de alimentación tendríamos HIGH con un input de 3.15 hasta Vcc y LOW entre 0 y 1.35V

En la salida tendríamos un HIGH con tensión mínima de 4.4V y un LOW con tensión máxima de 0.1V.

Otra cosa a tener en cuenta son los tiempos de retardo, es un pequeño tiempo que necesitan los transistores para polarizarse. Ésto hace que la reacción entre que se aplica una entrada y hay una salida no sea inmediata, sino que tarde un poco, aunque sean nanosegundos (del orden éste van las cosas). La tecnología TTL siempre ha sido más rápida que la CMOS, razón por la que se usa la familia HC (high speed CMOS), aunque hoy en día casi se podría decir lo contrario.

Control de entrada con botón y resistencia pull-up o pull-down

En muchos sistemas, sobre todo ya podéis haberlo visto en PICs y Arduinos, se utiliza un pequeño circuito de input con un botón y una resistencia, uno de ellos va a tierra y otro a alimentación. Si la resistencia va a masa, entonces la llamamos pull-down, y si va a alimentación es de pull-up. Entonces el circuito puede ir así:

Dsw1

Dsw2

Pero ojo, porque ésto nos trae otro dolor de cabeza. Tenemos que buscar el equilibrio entre resistencia-tensión LOW-corriente HIGH.

En el primer caso, hay que ponerle un valor a la resistencia de tal forma que cuando el interruptor esté abierto y queramos un LOW a la entrada, la corriente que se drena no aumente la tensión hasta V input HIGH y confunda al integrado. Por ejemplo en un TTL como el que ya hemos visto tendríamos un rango de resistencia con máximo de 0.8/0.0004 = 2k ohmios, pero no podemos ponerle el valor demasiado pequeño, porque entonces disiparía demasiada potencia, y el circuito consumiría muchísimo.

En el segundo caso, la resistencia debe ser lo suficientemente pequeña para dejar pasar la corriente mínima de polarización: 5/0.00002 = 250k ohmios máximo.

Entre otras maldades, podemos poner en la entrada un sensor de luz, basado en sólo una resistencia y un LDR, y calcular el divisor de tensión, dimensionando la resistencia para tener el margen necesario y que la puerta se active con cierto nivel de luz.

Existen puertas con histéresis que realmente, en la zona “inaceptable”, no cambian hasta llegar a los niveles máximos y mínimos. Éstas se usan para señales con mucho ruido, distorsionadas o que entran con defectos.

Analógica 6: AO lineal

¿Pero otra vez las funciones lineales del amplificador operacional? Sí. En clase las vimos otra vez una a una, pero a vosotros os voy a librar y os las miráis donde os convenga. También vimos las características ideales y reales. Impedancia, ganancia, seguidor, amplificador inversor, sumador, bla, bla, bla… Sólo tengo que añadir unos puntos:

  • El AO en realimentación negativa baja su ganancia (desde una enorme hasta la que le ponemos), de forma que aumenta su ancho de banda  (GBP)
  • En realimentación negativa, la impedancia de entrada aumenta y la de salida disminuye.

Pero la gracia aquí es entender las características reales del operacional. Las características estáticas, aquellas que están siempre ahí te gusten o no. Vamos a empezar. Para que sepáis qué es un amplificador operacional internamente, aquí va una aproximación:

aointerior

Corrientes de polarización

¿No creeríais que de verdad en las patas del amplificador operacional no entra corriente? Pues claro que entra corriente, una muy pequeña, suele rondar los nanoamperios. La corriente de polarización se suele expresar como la media de la corriente por cada terminal:

cpolComo su nombre indica, y a la vista del diagrama interno del amplificador, dichas corrientes son las que se encargan de polarizar los transistores de la primera etapa.

Corrientes de desviación a la entrada

También conocidas como corrientes de offset. Es la diferencia entre las corrientes de polarización del terminal inversor y no inversor del operacional. Ésta diferencia crea un nivel de offset a la entrada que se refleja en la salida.

cpol2

 

Es común que se produzca ésta diferencia, ya que las corrientes de polarización dependen fuertemente de la temperatura del operacional, por lo que algunos fabricantes incluyen una deriva térmica.

Tensión de offset  causada por corrientes de desviación

Como ya he dicho, la diferencia causa una tensión de offset que se ve en la salida. Dicha tensión es:

toff

Donde, como comprenderéis, Vd es la tensión en la entrada, Rth son las resistencias equivalentes de Thevenin en cada terminal, y Vo es el offset  a la salida, que es Vd por la ganancia.

Pero ésto no es todo el offset, sino que tenemos que añadir el que nos indica el fabricante  en la datasheet (el que vimos unos temas atrás).

Vo = Vo(fabricante) + Vo(corrientes)

Amplificador de instrumentación

Ya conocidos todos los tipos de aplicaciones comunes,, queda una aplicación diferencial que suele usarse para obtener una mayor precisión. Se usan varios operacionales configurados en éste circuito:

instrumentacion

 

Sus características son una alta impedancia de entrada (directamente al terminal del operacional), baja impedancia de salida, bajo offset y ruido. Éste sistema se suele vender todo en un integrado con patillas accesibles, así se pueden modificar al gusto los valores y se evitan ruidos adicionales.

Convertidor tensión-corriente

A veces nos conviene que al final de una línea de bastante distancia quede una tensión fija, pero debido a ruidos y características de la misma línea, no es posible. Lo que podemos hacer es usar un operacional como convertidor tensión-corriente, de forma que lo que conocemos en ésa línea es la corriente que pasa, y como sabemos, corriente que entra es igual a corriente que sale, pérdidas mínimas.

En ésta configuración, la carga suele estar en la realimentación:

tencor

 

También hay otras configuraciones. Hay fabricantes que venden conversores de precisión, como el XTE110.

Convertidor corriente-tensión

Cuando tenemos, por ejemplo, una fuente de tensión con mucha impedancia de salida, podemos tomarla como fuente de corriente y convertirla a tensión mediante éste convertidor:

corten

 

Pseudo-Integrador

Es un error común (en realidad nos inducen a error porque es lo que nos enseñan), pensar que tanto un integrador como un derivador compuesto por AO-Resistencia-Condensador va a funcionar si lo montamos. De hecho, ni siquiera funciona simulándolo en Proteus con un operacional real. ¿A qué se debe ésto? Si nos fijamos en los diagramas de Bode:

inte

der

 

Las respuestas de éstos circuitos son una rampa que tiende a más o menos infinito según nos alejamos de la frecuencia de corte. Cuando introducimos una señal triangular o cuadrada, dicha señal se puede descomponer en una suma de señales senoidales de distintas frecuencias, denominadas armónicos. Si un armónico tiene una frecuencia muy alta y lo ponemos en un derivador puro, o muy baja y lo ponemos en un integrador puro, la ganancia es muy grande, lo que distorsiona la salida.

Para ello, usamos el filtro paso bajo para integrar, y el filtro paso alto para derivar, asegurándonos, eso sí, de que las componentes frecuenciales de la señal se encuentren siempre en zona de atenuación.

De ésta forma, si integramos una señal cuadrada de alta frecuencia con un pseudo-integrador (filtro paso bajo con frecuencia de corte muy baja), obtenemos una triangular. Pero, dicha triangular no tiene la misma amplitud de pico que la cuadrada que hemos introducido, a no ser que el pseudo-integrador haya sido calculado para ello. En su lugar, obtenemos una señal triangular cuya tensión de pico a pico (Vpp) es:

Pseudoint

Donde:

T es el periodo de la señal cuadrada (1/frecuencia)

C es el valor del condensador

Y R es el valor de la resistencia del integrador puro, es decir la que va en la entrada, NO la que está en paralelo con el condensador. En la siguiente figura se denomina Rf1:

Si dividimos el valor de Vpp por 2, obtenemos el valor máximo de pico de la señal triangular.

Pseudo-Derivador

Al igual que se ha indicado antes, lo que vamos a usar es un filtro paso alto, y una señal triangular como entrada, pero de baja frecuencia, de forma que sus componentes frecuenciales se encuentren en la zona de atenuación:

En éste caso, prefiero hacerlo más gráfico, a la entrada tendremos la triangular:

Se puede deducir que la señal es Ve = f(t), una señal en función del tiempo, que es derivable. Su expresión es: Ve = m*t, porque es una pendiente en función del tiempo (a más tiempo, más tensión). Así que calculamos dicha pendiente, que será la diferencia de tensión entre B y A (máximo menos mínimo, 2 veces el máximo si está bien centrada), dividido por la mitad del periodo (tiempo que tarda en alcanzar el máximo):

pendiente

Y debido a la expresión del derivador:

derivador

Obtenemos lo siguiente:

pseudoder

En éste caso, Vs será la amplitud (el máximo de tensión por encima de 0, también habrá un mínimo con la misma amplitud pero negativa), y R en el diagrama de antes se denomina Rf.

Recordar también que tanto el integrador como el derivador son inversores, lo mejor para entender la salida respecto a la entrada es verlo gráficamente. En el integrador, 1kHz, C=100nF, R=1K:

derivadorsalida

 

En el derivador, 100Hz, C=100nF, R=10K:

derivadorsalida2

¿Qué más podemos hacer con operacionales? También se usan en el campo de la automática, como regulador PID de los más sencillos, supongo que en desuso hoy en día por la sencillez de tener sistemas ya montados, súper-controlados y precisos, por ordenador, con microcontroladores y todas las historias. Pero se puede hacer. Con unos cuantos integradores, derivadores y proporcionales en paralelo y luego sumados. No es recomendable.